\qquad

We know that the sine, cosine, and tangent functions all represent ratios of sides in a right triangle. But are they related in any other way? And what do cosecant, secant, and cotangent have to do with it?

A circle of radius 1 is drawn in the first quadrant. Segment $D B$ is tangent to the circle at point A.

1. What is the length of $A C$?
2. Explain why segment AF represents $\sin \theta$. Which other segment represents $\sin \theta$?
3. Explain why segment CF represents $\cos \theta$. Which other segment represents $\cos \theta$?
4. What is $(\sin \theta)^{2}+(\cos \theta)^{2}$? How do you know?

5. What is the relationship between angles θ and α ?
6. Label all the other angles in the diagram with a θ, α, or a 90° marking. Remember from Geometry that a tangent line is always perpendicular to the radius at the point of tangency (Point A).
7. What do you notice about the angles in $\triangle A C F$ and $\triangle B C A$? What does this tell you about the triangles?
8. Let's see what we can find out about the ratios in these triangles. Fill in the missing part of the proportion.

$$
\frac{A F}{F C}=\frac{}{A C}
$$

Rewriting this with what we already know we get the proportion below. Which trig ratio should we use to label segment AB?

$$
\frac{\sin \theta}{\cos \theta}=\frac{-}{1}
$$

9. Let's look at another ratio of sides. Fill in the missing parts of the proportion.

$$
\frac{A C}{C F}=\frac{B C}{}
$$

Let's rewrite this with what we know from the diagram. Which trig ratio should we use to label segment $B C$?

$$
\frac{1}{\cos \theta}=-
$$

10. Now let's look at triangles $\triangle A E C$ and $\triangle D A C$. How are these triangles related?
11. Fill in the missing proportions:

$$
\begin{aligned}
& \frac{E A}{E C}=\frac{A D}{} \\
& \frac{\cos \theta}{\sin \theta}=\frac{-}{1} \\
& \frac{A C}{E C}=\frac{}{A C} \\
& \frac{1}{\sin \theta}=\frac{-}{1}
\end{aligned}
$$

12. Which segment in the diagram represents $\csc \theta$? Which segment represents $\cot \theta$?
13. What is $1^{2}+\tan ^{2} \theta$?
14. What is $1^{2}+\cot ^{2} \theta$?

Check Your Understanding!

1. If $\sec \theta=\frac{7}{2}$, find $\cos \theta, \tan \theta, \sin \theta, \csc \theta$, and $\cot \theta$.

For questions 2-6, simplify each trig expression to one number or one trig expression.
2. $\tan \theta \cdot \cot \theta=$
3. $\sec ^{2} \theta\left(1-\sin ^{2} \theta\right)=$
4. $\frac{\cos ^{2} x+\sin ^{2} x}{\sec x}=$
5. $\sec ^{2} x-\tan ^{2} x=$
6. Challenge! $\csc x-\cos x \cot x=$

