\qquad

At this point, we've graphed sine, cosine, secant, and cosecant. Let's find out what happens when we plot the functions of $y=\tan \theta$ and $y=\cot \theta$.

1. Fill in the table for $y=\tan \theta$. Then use the table to sketch the graph on the coordinate plane.

θ	$\tan \theta$	θ	$\tan \theta$
$-\frac{\pi}{2}$		$\frac{3 \pi}{4}$	
$-\frac{\pi}{4}$		π	
0		$\frac{5 \pi}{4}$	
$\frac{\pi}{4}$		$\frac{3 \pi}{2}$	
$\frac{\pi}{2}$		2π	

2. What is the period of $y=\tan \theta$? How do you know?
3. What is the domain of $y=\tan \theta$?
4. What is the range of $y=\tan \theta$?
5. Use what you know about cotangent to sketch the curve of $y=\cot \theta$.

6. Write an equation for the vertical asymptotes.
7. Identify the period and range of $y=\cot \theta$. Explain why these make sense.

Check Your Understanding

1. Graph $y=\tan 3 x$.

2. Write an equation for the tangent graph below.

3. Write the equation of a cotangent function with a period of 2π that is shifted down 3 units.
4. Which of the following is equivalent to $y=\cot x$?
a. $y=-\tan x$
b. $y=-\tan \left(x-\frac{\pi}{2}\right)$
c. $y=\tan \left(x-\frac{\pi}{2}\right)$
d. $y=\tan (-x)$
5. Where on the interval $[0,2 \pi]$ do $y=\tan x$ and $y=\cot x$ intersect?
