

Yesterday we learned about the graphs of the parent functions $y = \sin x$ and $y = \sin x$ $\cos x$. Today we'll see how transformations affect these graphs.

1. Give a convincing argument for which of the four graphs doesn't belong. Can you find a reason for each of the graphs?

Α

В

C

2. The four equations below represent the four graphs. Match each equation with its graph without the use of a calculator.

$y = \sin(2x)$	$y = 2\sin x$
$y = \sin(x - \pi)$	$y = \sin x + 2$

3. Kennedy thinks that the graph of $y = \sin(x - \pi)$ could also be written as $y = -\sin x$. Do you agree or disagree? Explain.

Section 4.5 Day 2—Transformations of Sine and Cosine

Important Ideas:

Check Your Understanding!

1. a) Graph
$$y = -3\cos x$$

b) Graph
$$y = 2\sin(x - \frac{\pi}{2})$$

- 2. Determine the domain, range, period, and amplitude of $y = 5\cos\left(\frac{1}{2}x\right) + 2$
- 3. The equation for the graph below is given by $y = A \sin(Bx) + C$. Find the values of A, B, and C.

4. Which of the following equations is NOT equivalent to the other three?

A)
$$y = \cos(x + \frac{\pi}{2})$$

B)
$$y = \sin(-x)$$

C)
$$y = \sin(x + \pi)$$

D)
$$y = -\cos(x)$$