\qquad

Cold medication like VICKS ${ }^{\circledR}$ DayQuil ${ }^{\text {™ }}$ often includes the chemical Dextromethorphan, which is a cough suppressant. Although these medications are available over-the-counter and are generally low-risk, taking too large of quantities can cause serious side effects.

1. Dextromethorphan has a half-life of 3 hours. This means that every 3 hours, your body will eliminate $1 / 2$ of the current amount. In a 30 mL dosage of liquid DayQuil ${ }^{r \mathrm{~m}}$, there are 20 milligrams of Dextromethorphan, and after 3 hours, 10 mg would still be in your system.
a. How many mg of the drug will be in your system after 6 hours? After 9 hours?
b. How many mg of the drug will be in your system after 10 hours? How do you know?
2. Write a formula, $D(t)$, that gives the amount of Dextromethorphan in your system after t hours.
3. What percent of the drug remains in your body after 1 hour? What percent is eliminated?
4. Customers are instructed to use the medicine "as directed". For the average adult, Dextromethorphan is effective in quantities over 8 mg . What should the directions say about how often an adult should take the recommended serving?

5. Suppose you take your first 30 mL at 8 AM . Using the recommended dose you calculated in question 4 , calculate how many mg of Dextromethorphan will be in your system at various times throughout the day.

8 AM	10 AM	12 PM	2 PM	4 PM	6 PM	8 PM
20 mg						

Section 3.8-Exponential and Logarithmic Modeling

Important Ideas:

Check Your Understanding!

1. Estimates of the numbers (in millions) of US households with digital televisions is given by $D=30.92 e^{0.1171 t}$ where t represents years after 2000.
a. Is the number of households with digital televisions increasing or decreasing between 2003 and 2007? Justify your answer.
b. What does the 30.92 represent? What does the 0.1171 represent?
c. When will the number of U.S. households reach 100 million?
2. An investor invests $\$ 1000$ into an account that has continuously compounded interest. If after 3 years he has $\$ 1,450$, what is the interest rate of the account?
3. On the Great British Baking Show, a contestant takes their cake out of an $180^{\circ} \mathrm{C}$ oven and puts it in a refrigerator whose temperature is set at $3^{\circ} \mathrm{C}$. After 10 minutes, the cake has cooled to $150^{\circ} \mathrm{C}$. The temperature of the cake, in ${ }^{\circ} \mathrm{C}, t$ minutes after it is removed from the oven can be modeled by the equation $C(t)=A e^{k t}+3$.
a. Find the values of A and k.
b. What will be the temperature after 45 minutes?
