

We've learned a lot this year about solving equations, inverses, one-to-one functions, exponents, logarithms, and their properties. Today we are going to put all of these ideas together.

1. Solve for *x*. Write out each step.

$$5x^2 - 9 - 3x^2 + 4 = 27$$

2. Fill in the question marks.

a.
$$3^{?} = 81$$
 b. $\log_{17}? = 0$ c. $\log_{36}? = \frac{1}{2}$ d. $4^{?} = 27$

3. Re-write each equation in its alternate form (exponential to logarithmic, logarithmic to exponential). Do not solve.

a. $3^? = 81$ b. $\log_{17}? = 0$ c. $\log_{36}? = \frac{1}{2}$ d. $4^? = 27$

- 4. Why does re-writing the equation in alternate form help you figure out what "?" is?
- 5. What if the "?" is slightly more buried? Think back to question 1 and try to get "?" by itself. a. $\log_3? - 4 = 5$ b. $5(2^{7-?}) = 40$ c. $\ln \sqrt{?-8} = 0$
- 6. Fill in the question mark. Give a reason for your answer. a. $4^{?} = 4^{11}$ b. $5^{3?-1} = 5^{20}$
 - c. $\log_4 ? = \log_4 10$ d. $\log_7 20 = \log_7 ? \log_7 2$
- 7. Combine everything you know about exponents, logarithms, and solving equations to figure out what *x* is.

 $\ln(x+6) - \ln(x) = \ln(x)$

Name:____

Section 3.7—Solving Exponential and Logarithmic Equations

Important Ideas:

Check Your Understanding!

- 1. Solve for x. a. $\log_{49} x = \frac{1}{2}$ b. $6^x + 10 = 46$ c. $5 + e^{x+1} = 20$
- 2. Use the one-to-one property to solve for x.
 - a. $\ln(2x 2) = \ln 11$
 - b. $2^{x^2-6} = 8$
- 3. Solve for *x*. $2 \log_4 x - \log_4(x^3) = 1$
- 4. Use your graphing calculator to solve $6e^{1-x} = 25$.
- 5. Use the formula for continuous compounding, $A = Pe^{rt}$, to find how long it will take \$1500 to *triple* in value if it is invested at 12% interest, compounded continuously.