Name: \qquad

We've learned a lot this year about solving equations, inverses, one-to-one functions, exponents, logarithms, and their properties. Today we are going to put all of these ideas together.

1. Solve for x. Write out each step.

$$
5 x^{2}-9-3 x^{2}+4=27
$$

2. Fill in the question marks.
a. $3^{?}=81$
b. $\log _{17} ?=0$
c. $\log _{36} ?=\frac{1}{2}$
d. $4^{?}=27$
3. Re-write each equation in its alternate form (exponential to logarithmic, logarithmic to exponential). Do not solve.
a. $3^{?}=81$
b. $\log _{17} ?=0$
c. $\log _{36} ?=\frac{1}{2}$
d. $4^{?}=27$
4. Why does re-writing the equation in alternate form help you figure out what "?" is?
5. What if the "?" is slightly more buried? Think back to question 1 and try to get "?" by itself.
a. $\log _{3} ?-4=5$
b. $5\left(2^{7-?}\right)=40$
c. $\ln \sqrt{?-8}=0$
6. Fill in the question mark. Give a reason for your answer.
a. $4^{?}=4^{11}$
b. $5^{3 ?-1}=5^{20}$
c. $\log _{4} ?=\log _{4} 10$
d. $\log _{7} 20=\log _{7} ?-\log _{7} 2$
7. Combine everything you know about exponents, logarithms, and solving equations to figure out what x is.
$\ln (x+6)-\ln (x)=\ln (x)$

Section 3.7-Solving Exponential and Logarithmic Equations
Important Ideas:

Check Your Understanding!

1. Solve for x.
a. $\log _{49} x=\frac{1}{2}$
b. $6^{x}+10=46$
c. $5+e^{x+1}=20$
2. Use the one-to-one property to solve for x.
a. $\ln (2 x-2)=\ln 11$
b. $2^{x^{2}-6}=8$
3. Solve for x.
$2 \log _{4} x-\log _{4}\left(x^{3}\right)=1$
4. Use your graphing calculator to solve $6 e^{1-x}=25$.
5. Use the formula for continuous compounding, $A=P e^{r t}$, to find how long it will take $\$ 1500$ to triple in value if it is invested at 12% interest, compounded continuously.
