\qquad

You learned yesterday that logarithms undo exponentials by finding the missing exponent. Today we're going to explore the graphs of these inverse functions.

The table below represents the function $y=\log _{2}(x)$. Use the table to graph the function and answer the following questions:

x	y
$1 / 4$	-2
$1 / 2$	-1
1	0
2	1
4	2

1. What value of x would produce an output of -5 ? How do you know?
2. What is the domain and range of this function?
3. How are your answers to question 2 related to the domain and range of $y=2^{x}$?
4. The graphs of three parent logarithmic functions are shown below.
a) What do all of these graphs have in common?
b) The equations for the three graphs are $y=\log x, y=\log _{4} x$ and $y=\ln x$. Which is which? How do you know?
c) Use the graph to estimate $\log _{4} 6$. What does your answer mean?

5. Suppose we shift the function $y=\log _{4} x$ to the right three units.
a) Write a new equation, $g(x)$, for the transformed function.
b) How will this transformation affect the x-intercept, asymptote, domain, and range?

Section 3.5-Graphs of Logarithmic Functions

Important Ideas:

Check Your Understanding!

1. Graph $f(x)=\log _{3}(-x)$ without a calculator and identify the following:
a. Vertical Asymptote
b. X-intercept
c. Domain
d. Range

2. Match the following equations with their graphs. Do not use a calculator.
$y=-2 \log _{2} x \quad y=3 \log _{2} x \quad y=\frac{1}{2} \log _{2}(x-5) \quad y=-2 \log _{2} x+5 \quad y=\frac{1}{2} \log _{2} x-5$

A

B

C

D

E
3. Write an equation for a logarithmic function that has a vertical asymptote at $x=5$ and goes through the point $(11,1)$.

