Lumberjack Graphs

Name:

You learned yesterday that logarithms undo exponentials by finding the missing exponent. Today we're going to explore the graphs of these inverse functions.

The table below represents the function $y = \log_2(x)$. Use the table to graph the function and answer the following questions:

- 1. What value of x would produce an output of -5? How do you know?
- 2. What is the domain and range of this function?
- 3. How are your answers to question 2 related to the domain and range of $y = 2^x$?
- 4. The graphs of three parent logarithmic functions are shown below.
 - a) What do all of these graphs have in common?
 b) The equations for the three graphs are y = log x, y = log_4 x and y = ln x. Which is which? How do you know?
 c) Use the graph to estimate log₄ 6. What does your answer mean?
- 5. Suppose we shift the function $y = \log_4 x$ to the right three units.
 - a) Write a new equation, g(x), for the transformed function.
 - b) How will this transformation affect the *x*-intercept, asymptote, domain, and range?

Section 3.5—Graphs of Logarithmic Functions	
Important Ideas:	

Check Your Understanding!

- 1. Graph $f(x) = \log_3(-x)$ without a calculator and identify the following:
 - a. Vertical Asymptote b. X-intercept
 - Domain c.
 - d. Range

3. Write an equation for a logarithmic function that has a vertical asymptote at x = 5 and goes through the point (11, 1).

2 1

-2

-3 -4 -5 -6

5 234

-6 -5 -4 -3 -2 -1 -1