\qquad

Yesterday we looked at a particular rational function that represented the concentration of anesthesia in a patient's body. Today we're going to look at some other features of rational functions.

1. The graph of $g(x)=\frac{x^{2}+2 x-8}{x^{2}-x-2}$ is shown to the right.
a. Complete the table of values for $g(x)$.

x	$g(x)$
-4	
-1	
0	
2	
5	

b. What is the domain of $g(x)$?

2. The graph of $g(x)$ has one x-intercept. What is it?
3. Describe what is happening on the graph at $x=-1$. Why do you think this happens?
4. As x gets closer and closer to $x=-1$ from the left what is happening to the values of $g(x)$?
5. As x gets closer and closer to $x=-1$ from the right, what is happening to the values of $g(x)$?
6. Let's explore these features further. Re-write $g(x)$ by factoring the numerator and denominator.
7. Carlos argues that $g(2)=0$ but Lal says that $g(2)$ is undefined. Who is correct? Give a reason for your answer.
8. Make a conjecture about how you can use the factored form of a rational function to determine where the function will have zeros (x-intercepts), holes, and vertical asymptotes.

Section 2.6 Day 2—Rational Functions: Zeros, Holes, and Vertical Asymptotes
Important Ideas:

Check Your Understanding!

1. For $f(x)=\frac{x^{2}-16}{x^{2}+3 x-4}$, find the following:
a. Zeros:
b. Y-intercept:
c. Equation of any vertical asymptotes:
d. Ordered pair(s) of any holes:
e. Equation of any horizontal asymptotes:
2. Evaluate $f(x)$ at an x-value to the left and right of the vertical asymptote, to determine whether f is going to ∞ or $-\infty$.
3. Use all your work above to sketch the graph of $f(x)$.

