\qquad

Over the past few days you've learned a lot about finding both real and imaginary zeros of a polynomial function. Today we're going to put everything together! Use the clues given to answer the questions below. Put those graphing calculators away because this one's all you!

Let $f(x)=x^{4}-2 x^{3}+6 x^{2}-32 x+40$.
Clue 1: A table of selected values Clue 2: $f(x) \geq 0$ for all $x . \quad$ Clue 3: $f(x)$ has at least one

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-2	160
-1	81
0	40
1	13
2	0
3	25

1. How many real zeros does $f(x)$ have? How many imaginary zeros does $f(x)$ have? How do you know?
2. List one of the real zeros. Explain how you can figure out the multiplicity.
3. Show how you can find the remaining zeros.
4. Write $f(x)$ in factored form.
5. Were all the clues necessary to find the zeros? Explain why or why not.

Section 2.5—Connecting Zeros Across Multiple Representations
Important Ideas:

Check Your Understanding!

1. Let $g(x)=-x^{4}-2 x^{3}-22 x^{2}-50 x+75$.
a. Use your graphing calculator to find the real zeros of $g(x)$. State their multiplicity.
b. Find the remaining zeros.
c. Write $g(x)$ in factored form.
2. (Multiple Choice) Let $h(x)$ be a polynomial with 3 real zeros and two imaginary zeros. Which of the following could be the equation of $h(x)$?
A) $h(x)=(x-2)(x-5)(x+7)\left(x^{2}-7 x+12\right)$
B) $h(x)=(x-3)^{3}\left(x^{2}-2 x+2\right)$
C) $h(x)=x^{6}-5 x^{3}+3 x^{2}$
D) $h(x)=\left(x^{2}-9\right)^{2}(x-(2+3 i))$
