## **Detective Zero**

Name:\_\_\_\_\_



Over the past few days you've learned a lot about finding both real and imaginary zeros of a polynomial function. Today we're going to put everything together! Use the clues given to answer the questions below. Put those graphing calculators away because this one's all you!

Let  $f(x) = x^4 - 2x^3 + 6x^2 - 32x + 40$ .

**Clue 1:** A table of selected values **Clue 2:**  $f(x) \ge 0$  for all x.

**Clue 3:** f(x) has at least one imaginary zero.

| x  | f(x) |
|----|------|
| -2 | 160  |
| -1 | 81   |
| 0  | 40   |
| 1  | 13   |
| 2  | 0    |
| 3  | 25   |

- 1. How many real zeros does f(x) have? How many imaginary zeros does f(x) have? How do you know?
- 2. List one of the real zeros. Explain how you can figure out the multiplicity.
- 3. Show how you can find the remaining zeros.

- 4. Write f(x) in factored form.
- 5. Were all the clues necessary to find the zeros? Explain why or why not.



## Section 2.5—Connecting Zeros Across Multiple Representations

Important Ideas:

## Check Your Understanding!

- 1. Let  $g(x) = -x^4 2x^3 22x^2 50x + 75$ .
  - a. Use your graphing calculator to find the real zeros of g(x). State their multiplicity.
  - b. Find the remaining zeros.

- c. Write g(x) in factored form.
- 2. (Multiple Choice) Let h(x) be a polynomial with 3 real zeros and two imaginary zeros. Which of the following could be the equation of h(x)?
  - A)  $h(x) = (x-2)(x-5)(x+7)(x^2-7x+12)$
  - B)  $h(x) = (x-3)^3(x^2-2x+2)$
  - C)  $h(x) = x^6 5x^3 + 3x^2$
  - D)  $h(x) = (x^2 9)^2(x (2 + 3i))$

