\qquad

How can we find all solutions to a polynomial? With the Fundamental Theorem of Algebra, we know a polynomial has as many roots as its highest degree. What happens when some of those roots don't show up on a graph?

1. Graph $f(x)=x^{2}+4$
a. How many roots does this quadratic equation have according to the Fundamental Theorem of Algebra?
b. How many roots does this quadratic equation have according to the graph>

c. Solve for the zeros algebraically.
2. In the complex math world, $\sqrt{-1}=i$, an imaginary number. We can continue solving 1 c by rewriting $x= \pm \sqrt{-4}$ as $x= \pm \sqrt{-1} \cdot \sqrt{4}$. Now finish solving for the zeros.
3. Find the zeros of $f(x)=x^{2}+2 x+5$ using any strategy.
4. Write $f(x)$ in factored form.
5. Can you predict what answer you'll get when you multiply the factors? Use the area model below to check your prediction.

6. Could a quadratic function have one real and one imaginary root? Explain why or why not.

Important Ideas:

Check Your Understanding

1. Find all roots: $f(x)=x^{2}-x+4$
2. Multiply: $(-2-7 i)(-2+7 i)$
3. We know $6+i$ and $4-\sqrt{3}$ are roots of a $4^{\text {th }}$ degree polynomial. Find the remaining roots.

4. SAT Practice!

For $i=\sqrt{-1}$, what is the sum $(7+3 i)+(-8+9 i)$?
A) $-1+12 i$
B) $-1-6 i$
C) $15+12 i$
D) $15-6 i$

