The End Is in Sight

Name:

What happens when you evaluate functions for very large positive numbers and very large negative numbers? How does that manifest on the graph? Let's investigate!

- 1. Consider $f(x) = x^3 + 5$
 - a. What happens to the y-values as the x-values get bigger and bigger (at the right end of the graph)? Try a few values to investigate.
 - b. What happens to the y-values as the x-values get more and more negative (at the left end of the graph)? Try a few values to investigate.
- 2. Consider $g(x) = 3x^4 + x^3 + 5$
 - a. What happens to the y-values as the x-values get bigger and bigger (at the right end of the graph)? Try a few values to investigate.
 - b. What happens to the y-values as the x-values get more and more negative (at the left end of the graph)? Try a few values to investigate.
- 3. Based on your work above, how do you think the largest exponent in the function affects the behavior at the ends of the graph?
- 4. What do you think would happen to the end behavior if f(x) and g(x) were reflected over the x-axis? How do you know?
- 5. What do you think would happen to the end behavior if f(x) and g(x) were shifted horizontally or vertically? How do you know?
- 6. Without graphing the function, make a prediction about the behavior at the right and left ends of each function below.

Function	Highest Exponent	Coefficient for Term with Highest Exponent	As x gets more negative, f(x) approaches	As x gets very large, f(x) approaches
$f(x) = 3x^2 + 2$				
$f(x) = -2x^3 + x - 2$				

Check Your Understanding

Important Ideas:

- 1. Describe the end behavior of the graph to the right.
- 2. Is it possible for this graph to have a degree of 5? Why or why not?

3. Which of the following terms, when added to the given polynomial, will change the end behavior? Check all that apply.

$$y = -2x^7 + 5x^6 - 24$$

- $\begin{array}{c|c} -x^8 \\ \hline -3x^5 \\ \hline 5x^7 \\ \hline 1000 \\ \hline -300 \end{array}$
- 4. Match the polynomial to the graph without using a calculator or Desmos.

1. $y = -2x^3 + 3x + 1$ 2. $y = \frac{1}{3}x^3 - x^2 - \frac{4}{3}$ 3. $y = 3x^2 + 2$ 4. $y = -x^4 + 3x^2 + 3$

